

0040-4039(94)E0640-J

The Synthesis of Optically Active 2-Phenylthio Aldehydes

Kelly Chibale and Stuart Warren*

University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW.

Abstract: Optically active linear and branched chain 2-phenylthio aldehydes can be made in high optical purity (up to >98% e.e.) by sulfenylation of a phenylalanine-derived oxazolidinone imide, reduction and re-oxidation with the Dess-Martin reagent even though the products enolise easily.

The use of racemic 2-phenylthio (PhS) aldehydes to achieve high Felkin¹ selectivity has been well demonstrated in Mukaiyama-type aldol reactions of both stereogenic and non-stereogenic silylketene acetals.² Syn or anti-selective aldol reactions of lithium or boron enolates with racemic 2-PhS-aldehydes also show good Felkin control.³ However, homochiral versions of these processes in which the 2-PhS-aldehyde is the sole source of chirality have yet to be realised. This is mainly because the synthesis of optically active 2-PhS aldehydes is made difficult since these aldehydes racemise easily by enolisation unless C-2 is quaternary. Ugi⁴ reported the first synthesis of enantiomerically enriched 2-PhS-aldehydes (maximum 51% e.e.), Poli and Scolastico⁵ have made enantiomerically pure 2-ArS-aldehydes via bis-ArS-acetals, and Enders⁶ has recently reported the most general synthesis to date via alkylation of the SAMP derivative of 2-RS-acetaldehyde. We have used asymmetric aldol reactions with prochiral 2-PhS-aldehydes as a route to β-hydroxysulfides for our rearrangement chemistry³ and wish to use homochiral 2-PhS-aldehydes in both single and double stereodifferentiating aldol reactions as an alternative approach to the same intermediates. We now report the synthesis of highly enantiomerically enriched 2-PhS-aldehydes 1 (>98% e.e.) by diastereoselective sulfenylation of chiral enolates derived from the Evans oxazolidinone⁷ 3.

There are few reports of asymmetric sulfenylation. Moderate e.e.s have been reported from chiral sulfenamides⁸ and tin (II) enolates in the presence of a chiral diamine ligand.⁹ Sulfenylation of O-silyl imide enolates from Evans valine-derived oxazolidinones gives reasonable diastereoselectivity¹⁰ and sulfenylation of lithium enolates from imidazolidinones gives very high asymmetric induction.¹¹ We have sulfenylated lithium enolates of the Evans phenylalanine-derived oxazolidinones 2 (Scheme 1 and table 1) and report that diastereoselectivity is excellent with compounds 2a-d (R = Et, Pr, i-Pr, t-Bu) but poor with compounds 2e having a branched chain next to the carbonyl group. Aldehydes of type 1 are more useful than those blocked at the 2-position but to complete their synthesis we have had to solve the problem of racemisation by enolisation.

Table 1: Diastereoselective Sulfenylation of Imides 2

Imide	R	Yield (%)	Ratioa	Yield ^b , %	
		of 2 from 3	(S,S): (R,S)-4	(S,S)-4	
2a	Et	86	97:3	83	
2b	n-Pr	93	>97:3	89	
2 c	i-Pr	84	>97:3	92	
2 d	t-Bu	91	>97:3	88	

^aDetermined by ¹H NMR (250 MHz) on the crude reaction mixture. ^bYield after column chromatography.

The reactions in scheme 1 were highly diastereoselective: the minor diastereoisomer could be detected by the ¹H NMR (250 MHz) of the crude reaction mixture only in the case of 4a. The major products (S,S)-4a-d were obtained as highly crystalline compounds after purification by column chromatography to remove excess PhSSPh. Only (S,S)-4b failed to crystallise. We believe the sense of asymmetric induction with this non-chelating electrophile to be the same as that of the alkylation of the corresponding lithium enolates⁷ and of the sulfenylation of related silyl enol ethers ¹⁰ and opposite to that of aldol reactions of the corresponding boron enolates.³

Conversion to homochiral 2-PhS-aldehydes 1 now required cleavage of the external amide bond of 4 and reduction without racemisation. The successful partial reduction of achiral N-acylthiazolidin-2-ones 12 and of a chiral syn aldol product based on the valine-derived Evans imide 13 to the respective aldehydes using DIBAL and Red-Al® [NaAlH2(OCH2CH2OMe)2] prompted us to investigate the direct reduction of the imides 4 to the 2-PhS-aldehydes 1. Nucleophilic attack, especially by LiOH, 7 is usually preferred at the external amide carbonyl in compounds resembling 4, so we also considered an alternative route via complete reduction of the imides 4 to the intermediate homochiral 2-phenylthio alcohols 5 using LiBH4/H2O 14 (scheme 2 and table 2) followed by oxidation. In the event reduction with Red-Al® gave some racemisation while reduction with LiBH4/H2O preserved stereochemical integrity, but this alternative route required a careful choice of oxidant to avoid racemisation in the formation of the aldehydes 1 from the alcohols 5.

Table 2: Reduction of Sulfenylated Imides (S,S)-4 to Aldehydes 1 and Alcohols (S)-5.

Entry	R in Imide	Reducing	Temp.	Product	Yielda (%)	e.e. ^b (%)
	(S,S)-4	agent		1 or (S)-5	1 or (S)-5	1 or (S)-5
1.	Et	Red-Al®	-78 °C	(±)-1a	-	0
2.	n-Pr	Red-Al®	-78 °C	(±)-1b	-	0
3.	i-Pr	Red-Al®	-78 °C	(S)-1c	8	45
4.	i-Pr	Red-Al®	0 ℃	(S)-1c	23 (68)	14
5.	t-Bu	Red-Al®	-78 °C	(S)-1d	10 (65)	97
6.	t-Bu	Red-Al®	0 °C	(S)-1d	16	94
7.	Et	LiBH4/H2O	room temp.	(S)-5a	94	>98
8.	n-Pr	LiBH4/H2O	room temp.	(S)-5b	90	>98
9.	i-Pr	LiBH4/H2O	room temp.	(S)-5c	93	>98
10.	t-Bu	LiBH4/H2O	room temp.	(S)- 5d	30° (60)	>98

^aYield after column chromatography on silica, yield in brackets is of recovered starting material; ^bFor aldchydes: e.e. determined by ¹H NMR (250 MHz) in the presence of the chiral shift reagent Eu(hfc)₃, for alcohols: by ¹H NMR (250 and 400 MHz) analysis of diastereomeric Mosher esters in comparison with racemic compounds³; ^cYield after 2 days.

Red-Al® reductions of the less hindered sulfenylated imides (S,S)-4a,b gave racemic 2-PhS-aldehydes (entries 1-2, table 2). The more hindered aldehydes 1c,d were formed with reasonable e.e.s but the yields were poor (entries 3-6). DIBAL reduction gave more or less similar results. However, total reduction with LiBH4/H2O gave good yields of the alcohols (S)-5 in excellent optical purity (entries 7-10): only with the most hindered imide (S,S)-4d was the yield poor. The chiral auxiliary 3 was recovered in both reductions. Oxidation of the homochiral 2-PhS-alcohols (S)-5 to the 2-PhS-aldehydes 1 required chemoselective oxidation under non-basic conditions to avoid both oxidation at sulfur and racemisation. The Swern¹⁵ and Dess-Martin¹⁶ methods were obvious choices. Results are presented in table 3.

Table 3: Oxidation of Homochiral 2-Phenylthio Alcohols (S)-5 to Aldehydes (S)-1.

Entry Alcohol 5		Conditions	Product	Yield ^a , %	e.e.b, %
1.	(S)-5a	Swern, Et ₃ N	(±)-1a	86	0
2.	(S)-5a	Swern, i-Pr2NEt	(±)-1a	_c	0
3.	(S)-5c	Swern, Et ₃ N	(±)-1c	94	0
4.	(S)-5c	Swern, i-Pr2NEt	(S)-1c	74 ^d	71
5.	(S)-5d	Swern, Et ₃ N	(S)-1d	34d	57
6.	(S)-5a	Dess-Martin	(S)-1a	92¢	>98
7.	(S)-5c	Dess-Martin	(S)-1c	90c	93

^aYield after column chromatography on silica; ^bDetermined by ¹H NMR (250 MHz) in the presence of the chiral shift reagent Eu(hfc)₃; ^cYield not determined; ^dSome starting material was recovered, 22-34%; ^eYield of crude aldehyde.

Swern oxidations gave racemic aldehydes 1a whether Et₃N or i-Pr₂NEt was used as base. Optically active 1c and 1d could be formed by this method but yields and e.e.s were moderate. The Dess-Martin oxidation was far superior to the Swern (entries 1-5 vs 6-7): the Dess-Martin oxidations proceeded smoothly and were over within 0.5 hours at room temperature. The crude aldehydes were very clean by ¹H NMR and

could be used in crude form for other synthetic transformations. Presumably the success of the Dess-Martin procedure is due to the slightly acidic to near neutral conditions during oxidation and work-up while the limited success of the Swern procedure is due to base-catalysed racemisation of the product aldehydes (use of the more hindered base i-Pr₂NEt followed by a cold acid-buffered wash helps minimise racemisation, entry 3 vs entry 4, table 3). Purification of the aldehydes 1 from the Swern procedure by column chromatography did not result in complete racemisation (contrary to the previous report⁵) especially with the more sterically hindered branched chain 2-PhS-aldehydes to and 1d (table 2 entries 3-6 and table 3 entries 4-5). But the less sterically hindered open chain aldehydes (1a) and (1b) (table 2 entries 1-2 and table 3 entries 1-2) may well racemise on columning as is reported with similar aldehydes.⁵ The fact that aldehyde 1a (table 3 entry 6) was obtained in optically pure form from the Dess-Martin oxidation shows that racemisation of optically active 2-PhS-aldehydes under acidic conditions is not a serious problem. 17

In summary we have demonstrated an alternative route to highly enantiomerically enriched enolisable 2-PhS-aldehydes which is complementary to the Enders⁶ route - we sulfenylate chiral enolates while they alkylate pre-sulfenylated SAMP derivatives - and shown that such aldehydes are configurationally stable under suitable conditions and can be isolated. No doubt use of the opposite enantiomer of the chiral auxiliary 3 in the sulfenylation reaction would give the opposite enantiomer of the aldehydes 1. Our approach also provides homochiral 2-phenylthio alcohols 5 which are important precursors for homochiral epoxides. 9,18 This approach does not permit the synthesis of blocked 2-PhS-aldehydes from 2e and aldols from these aldehydes must be made by kinetic resolution.3a

Acknowledgements: We thank Cambridge University Livingstone Trust for a Livingstone Scholarship, Committee of Vice-Chancellors and Principals of UK universities for the ORS award (KC), and Dr. Richard D. Tillyer (Cambridge) for a generous gift of the iodinane oxide precursor for the Dess-Martin reagent.

- 1. Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett., 1968, 2199-2204.
- Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.; Consolandi, E. J. Org. Chem., 1992, 57, 456-2.
- (a) Chibale, K.; Warren, S. Tetrahedron Lett.. 1992, 33, 4369-4372; (b) Chibale, K.; Warren S. Phosphorus, Sulfur, and Silicon, 1993, 74, 401-402; (c) Aggarwal, V. K.; Coldham, I.; McIntyre, S.: Sansbury, F. H.; Villa, M.-J.; Warren, S. Tetrahedron Lett., 1988, 29, 4885-4888; (d) Coldham, I.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1993, 1637.
- Youn, J.-H.; Herrmann, R.; Ugi, I. Synthesis, 1987, 159-161.
- Poli, G.; Belvisi, L.; Manzoni, L.; Scolastico, C. J. Org. Chem., 1993, 58, 3165-3168.
- Enders, D.; Schäfer, T.; Piva, O.; Zamponi, A Tetrahedron, 1994, 50, 3349-3362.
 Evans, D. A.; Rieger, D. L.; Jones, T. K.; Kaldor, S. W. J. Org. Chem., 1990, 55, 6260-6268; Evans, D. A.; Enis, M. D.; Mathre, D. J.; J. Am. Chem. Soc., 1982, 104, 1737-1739; Gage, J.R.; Evans, D.A. Org. Synth., 1989, 68, 77-91.
- Hiroi, K.; Nishida, M.; Nakayama, A.; Nakazawa, K.; Fujii, E.; Sato, S. Chem. Lett., 1979, 969-972.
- Yura, T.; Iwasawa, N.; Clark, R.; Mukaiyama, T. Chem. Lett., 1986, 1809-1812.
 (a) Alexander, R. P.; Paterson, I. Tetrahedron Lett., 1985, 26, 5339-5340; (b) Paterson, I.; Osborne, S. Synlett., 1991, 145-146.
- 11. Orena, M.; Porzi, G.; Sandri, S. Tetrahedron Lett., 1992, 33, 3797-3800.

- Izawa, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn., 1979, 52, 555-558.
 Meyers, A. I.; Spohn, R. F.; Linderman, R. J. J. Org. Chem., 1985, 50, 3633-3635.
 Penning, T. D.; Djuric, S. W.; Haack, R. A.; Kalish, V. J.; Miyashiro, J. M.; Rowell, B. W.; Yu, S. S. Synth.Commun., 1990, 20, 307-312.

 15. Mancuso, A. J.; Swern, D. Synthesis, 1981, 165-185.

 16. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc., 1991, 113, 7277-7287. The reagent used was the 12-1-
- 5-Triacetoxyperiodinane which can be conveniently prepared by the method of Ireland (see Ireland, R. E.; Liu, L. J. Org. Chem., 1993, 58, 2899).
- 17. Enders, D. in Asymmetric Synthesis, Ed. Morrison, J. D., 1984, Orlando, vol. 3, Academic Press, New York, p. 227.
- 18. Pirkle, W. H.; Rinaldi, P. L. J. Org. Chem., 1978, 43, 3803-3807.